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Abstract

Great circle flight during the en-route phase is exam-
ined with the goal of trajectory prediction. Equation
of the great circle is used for deriving closed form so-
lutions of the course angle required for flying the great
circle. The heading angle required for flying the course
angle in the presence of winds aloft is described. Since
aircraft maintain airspeed or Mach number rather than
groundspeed, the location of the aircraft cannot be pre-
cisely predicted sometime into the future without ade-
quate knowledge of the wind and temperature. A wind
forecast model that provides the wind and temperature
data is described. Since groundspeed depends on tem-
perature, windspeed and track-relative wind heading,
equations that describe its sensitivity with respect to
these variables are presented. An algorithm is presented
for predicting the nominal trajectory based on the data
derived from the forecast model. Finally, an algorithm
for estimating error bounds around the nominal trajec-
tory is presented. The error bounds are determined by
propagating the wind forecasting errors along the nom-
inal trajectory.

1 Introduction

Under the current air traffic rules airplanes are required
to follow designated routes, which in the United States
are referred to as wvictor airways and jet routes. The
route system consists of a network of navigational aids
and air traffic control facilities for providing safe and
orderly flow of traffic. Airplanes are required to com-
ply with the minimum separation rules in the vertical,
longitudinal and lateral directions [1]. Minimum sepa-
ration rules are a function of aircraft type, speed, avail-
ability of tracking facilities and additional factors such
as wake vortices. Lateral separation is established by
route structures with protected airspace that does not
overlap to keep aircraft at a particular altitude on dif-
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ferent routes. Vertical separation is established by as-
signing 1000 feet between aircraft up to and including
29,000 feet altitude. Above 29,000 feet, a separation of
2000 feet is required. When the aircraft mix is such that
wake turbulence is not a factor and sensor coverage is
available, the minimum longitudinal separation for two
aircraft at the same altitude is five nautical miles. A
reduced separation of three miles may be used when
the aircraft are within 40 nautical miles from the radar
antenna. Speed control is the primary mechanism for
maintaining longitudinal separation.

The current air traffic route structure is capacity
and flexibility limited [2]. It has been argued that re-
cent and future technological enhancements in the ar-
eas of communication, navigation and surveillance have
the potential for automation in the cockpit and on the
ground for conflict identification and elimination. The
goal is to provide aviation users the flexibility of Vi-
sual Flight Rules (VFR) while maintaining the protec-
tion available under the Instrument Flight Rules (IFR).
Free flight is envisioned to accomplish this goal. The
Radio Technical Commission for Aeronautics (RTCA)
defines free flight as a safe and efficient flight operating
capability under IFR in which the operators have the
freedom to select their path and speed in real time. Air
traffic restrictions are imposed only to ensure separa-
tion, to preclude exceeding airport capacity, to prevent
unauthorized flight through special use airspace, and to
ensure safety of flight. Restrictions are limited in ex-
tent and duration to correct the identified problem [2].
The impact of free flight is largely associated with the
en-route portion of the flight which begins 200 miles be-
yond the departure airport and ends 200 miles before
the arrival airport. This motivates the current study of
the en-route phase of flight.

During the en-route phase of the flight user pre-
ferred routing will be permitted. This means that air-
craft will be able to take advantage of the on-board sys-
tems to fly optimum flight paths. Current generation
Flight Management Systems (FMS) are capable of fly-
ing optimal trajectories for input cost index. This index
is a function of current fuel prices and crew costs. The
FMS constructs both lateral and vertical paths based
on predicted winds, selected cruise speed and airplane



performance model, as described in [3]. Since airplane
performance parameters are closely tied to the Mach
number, it is directly controlled by the FMS. However,
groundspeed rather than airspeed resulting from the
Mach number, is needed for locating the airplane in
an earth fixed coordinate frame. To be able to deter-
mine the groundspeed, the windspeed and direction are
required in addition to the airspeed. Without an ade-
quate knowledge of groundspeed, separations required
for air traffic control in a free flight environment cannot
be guaranteed. Trajectory prediction, which is based
on groundspeed, is the key to conflict detection and
maintainance of separation minimums. In this research,
great circle en-route flight is examined with the goal of
trajectory prediction.

Subsequent sections are organized as follows.
Great circle equation is derived in Section 2. Kinematic
equations are used along with great circle equation to
derive closed-form solutions of the course angle required
to fly the great circle route in Section 3. The heading
angle required for maintaining the desired course angle
in the presence of winds is also described in Section 3.
Since trajectory prediction requires groundspeed which
in turn depends on temperature and winds, the sensi-
tivity of groundspeed is explored in Section 4 with the
purpose of developing error models for position uncer-
tainty prediction. The error models are used in Section
5 for position uncertainty prediction. Two algorithms,
one for prediction of the nominal trajectory and the
other for prescribing uncertainty bounds on the nom-
inal trajectory, are also described in Section 5. The
position uncertainty bounds are compared with 5000
Monte Carlo simulations in Section 6. The paper is
concluded in Section 7. Finally, a weather forecasting
model is described in Appendix A.

2 Great Circle

Great circle is the shortest length curve between two
points on a sphere. This problem is also referred to
as the geodesics problem in literature. It is known that
this curve is the intersection of the sphere with the plane
passing through the center of the sphere and the two
points on the sphere. This fact can be derived using
the calculus of variations approach as shown in [4].
Let a frame of reference be defined as follows.
Earth-centered right-handed Cartesian coordinate sys-
tem with the z-axis in the direction of the north pole
and x-axis in the direction of the intersection of the
equator and prime meridian. It is noted that the ori-
gin in this case is at (0,0,0). Let (z;,y;,2;) be the
coordinates of the departure point and (zy,yy,2z¢) be
the coordinates of the arrival point on the surface of an
earth-centered sphere of radius R. Let any point on the
plane passing through the origin, departure and arrival
points be given by (z,4, z). The equation of the plane is

obtained by the dot product of a vector defined by the
origin and any one of the points on the plane, with a
vector normal to the plane. The normal to the plane is
obtained by the cross product of vectors defined by the
origin and two other points on the plane. This results
in the equation of the plane in the form:

Az +By+Cz=0 1)
with

A = yizy — 2y (2)

B = zizy—xizf (3)

C = zyy—yiy (4)

The coordinates of any point on the sphere of radius R
are given in terms of the latitude, A, and longitude, 7,
as:

= RcosAcosT (5)
= RcosAsinT (6)
z = Rsin) (1)

With these relations, the coordinates of the departure
and arrival points are specified in terms of their re-
spective latitudes and longitudes (A;,7) and (Ag,7y);
thus A, B and C in Equations (2) - (4) are specified
constants. Equation of the great circle is obtained by
substituting Equations (5) - (7) in the equation of the
plane, Equation (1). Thus,

tanA:—(ACOSTgBSIHT) ®)

Great circle distance, [, is obtained by the dot
product of the vectors defined by the origin and the
departure and arrival points as:

I = Rcos ' {sin\; sin Ay + [cos(7y — 7;)] cos \; cos As }

9)

In the next section the equation of the great cir-

cle is used with the equations of motion to derive the
heading angle required to fly the great circle route.

3 Navigation Equations

The kinematic equations of motion for a point mass
model are given as:

: 1

A= }_BVQ COS X (10)
. 1 .

7= Rcos)\Vg sin x4 (11)
h = Veims (12)

where, A is latitude, 7 is longitude, h is geometric al-
titude, R is the mean radius of the Earth, V, is the



groundspeed, X,y is the heading angle of the ground-
relative velocity vector defined with respect to local
north and V,j;ms is the climb rate.

The ground velocity is the resultant of the hori-
zontal components of the airmass-relative velocity and
wind velocity, as shown in Figure 1. Magnitude of

North

Vg

East
Figure 1: Relative geometry.

the ground velocity vector is called groundspeed, V.
The magnitude of the horizontal components of the
airmass-relative velocity is airspeed, V, and and yx is
heading angle of the airmass-relative velocity vector.
The magnitude of the horizontal components of the
wind velocity W,, and W,, is windspeed, V,,, where
Vw = W2+ W2. Here, W,, W, and W,, are the
north, east and up components of the wind velocity vec-
tor in the local horizontal coordinate frame. The wind
heading angle, x.,, defines the direction of the horizon-
tal component of the wind velocity vector. It is given
as: Xy = tan= (W, /W,,).

In the aeronautical literature, course angle and
track angle are defined as follows. Course angle is as-
sociated with the planned path while the track angle is
associated with the actual path. In the ensuing discus-
sion it is assumed that the aircraft has a perfect head-
ing control system which maintains track angle equal
to the course angle. For heading guidance based on the
planned path, x, in Equations (10) and (11) is inter-
preted as course angle. The x, that results from the
heading x is interpreted as track angle. To maintain
a prescribed course, the aircraft needs to fly a particu-
lar heading angle. In the absence of control and wind
perturbations, this angle is same as the course angle.
However in the presence of wind, the heading angle is
offset from the course to compensate for the cross com-
ponent of wind.

For great circle navigation, the course angle can be

determined via Equations (10) and (11) as:

tan x, = (Z—;) cos A (13)
The derivative of longitude with respect to latitude can
be obtained from the equation of the great circle, Equa-
tion (8), and substituted into Equation (13) for determi-
nation of the following open-loop closed-form solution
of the course angle required for flying the great circle
route:

C
a1
Xg = tan { cos A\(AsinT — BcosT) } (14)

An alternative navigation law can be developed by us-
ing the present aircraft position (\,7) and the desti-
nation position (Az,7¢) for computation of A, B and
C, in Equations (2) - (4). This results in the following
closed-loop form:

sin(7y — 7) cos As
sin Ay cos A — sin A cos Ay cos(7y — 7) }

(15)
The difference between the two navigation laws, Equa-
tions (14) and (15), is that if deviations occur in the
first case, the control system is expected to drive the
aircraft back to the planned great circle path while in
the second case, a new great circle course is set from
the present position to destination.

For predicting the location of the airplane between
the current time, to and at a future time, ¢,, Equation
(14) or (15), can be used with Equations (10) and (11)
to obtain:

Xg = tan™" {

p
Altp,) = Ato) + = Vg cos xgdt (16)
R to
1 [t V, sinx,
T(tp) = T(to) + E " mdt (17)

Assuming the climb rate to be zero,
h(ty) = h(to) (18)

Equations (16) and (17) require an estimate of V.
Following Figure 1 [5],

Vg =V cosxe + Vi €OS Xwg (19)

where, from the law of sines,

1 [ Vwsiny
. =si 1 w wg 20
Xe=sin ! (FeEpe ) (20)
and
Xe = Xg—X (21)
Xwg = Xw — Xg (22)

Here, x. is the wind correction or crab angle and X, is
the track-relative wind heading. From Equations (19)



and (20), the groundspeed and the heading angle re-
quired for maintaining the course angle of x, in a wind
field are given as:

V, =V cos {sin1 [(%) sin Xwg]} + Vi cosxuwg (23)

and

X =Xg — sin ! {% sin Xwg} (24)
The second term in Equation (24) is the wind correction
term. It may be seen that with the heading angle so
prescribed, the groundspeed in Equation (23) is only a
function of the airspeed, V.

The airspeed, V, in Equation (23) is given in terms
of the Mach number, M, and the speed of sound, a, as:

V =Ma (25)

The speed of sound depends on the absolute tempera-

ture, O:
a =/ YairRair© (26)

where, v,i is the ratio of specific heats with a value
of 1.4 for air, R,;. is the gas constant with a value of
287.04 J/Kg K [6]. © is the absolute temperature mea-
sured in degrees Kelvin. The resulting speed of sound
is in m/s. With these equations it is seen that either
Mach number or airspeed can be used in the ground-
speed equation.

Having related the groundspeed to windspeed,
wind heading and temperature, it is seen from Equa-
tions (16) and (17) that trajectory prediction is pos-
sible if these quantities are known. Fortunately, wind
and temperature forecasts are provided by the National
Oceanic and Atmospheric Administration (NOAA).
The NOAA model is described in the Appendix. In the
next section the sensitivity of the groundspeed with re-
spect to temperature, wind velocity and wind heading
are explored.

4 Groundspeed Sensitivity

Groundspeed sensitivity is defined as the change in
groundspeed due to the changes in airspeed, windspeed
and track-relative wind heading. Equation (23) shows
the dependence of groundspeed on these variables. If
Mach number is flown instead of airspeed, Mach num-
ber and temperature become independent variables and
airspeed becomes a dependent variable via Equations
(25) and (26). Clearly, if either Mach or airspeed is
controlled directly by a control system, sensitivity with
respect them is of little use because the control system
is expected to eliminate deviations from the nominal.
Thus, either Mach or airspeed can be assumed to be
known.

To develop some insight into how windspeed and
track-relative wind heading effect the groundspeed, con-
sider the special cases of tailwind, headwind and cross-
wind. In the tailwind case, x4 = 0, which leads to:

Vo=V +V, (27)
In the headwind case, xwgy = 7, which results in:
Vo=V =V, (28)

In the crosswind case, x4 = £7/2, which leads to:

V, = VT V2 (29)

These three cases show that windspeed magnitude in
the crosswind case has the least impact on the ground-
speed. Typically, winds aloft are less than 100 knots,
and the aircraft en-route airspeed is about 500 knots.
For a windspeed of 100 knots and an airspeed of 500
knots, V; = 600 knots for the tailwind case, V;, = 400
knots for the headwind case and V; = 490 knots for
the crosswind case. It may be noted that for V, to
change from 600 knots to 400 knots as the track-relative
wind heading changes from zero to 180 degrees, V, has
to equal 500 knots at some angle. Thus, groundspeed
equals the airspeed at some track-relative wind heading,
even for a non-zero wind magnitude.

The sensitivity of groundspeed with respect to air-
speed is obtained via Equations (19) and (20) as:

oV _ v

ov \/V2 — V2sin® xu,
Using Equations (30), (25) and (26), the sensitivity of
groundspeed with respect to temperature can be ob-

tained in terms of the Mach number, temperature and
wind terms as:

(30)

rYairRair
©]

3V, _ (19438M
80 2

1

2
Vi 8in Xwg
1-—
1.9438 M /Yair Rair®

Here, R,;r has units of J Kg/K, © has units of K and
1.9438 is the conversion factor from meter/second to
knots. This equation is used for generating Figure 2.
The Figure shows three graphs corresponding to the no
wind case, and 50 knot and 100 knot cases. In each
case, the track-relative heading was assumed to be 90
degrees. Thus, these cases represent the worst case sce-
nario as may be verified by inspection of Equation (31).
To bring the range of temperatures, shown on the ab-
scissa, in perspective, temperatures of 256 Kelvin and
217 Kelvin correspond to altitudes of 16,000 feet and

(31)
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Figure 2: Groundspeed sensitivity with respect to tem-
perature.

65000 feet in the Standard Atmosphere. The tempera-
ture is constant between 36089 feet and 65617 feet al-
titudes in the 1962 U. S. Standard Atmosphere. Thus,
it can be seen from Figure 2, that although there is a
slight increase in sensitivity with decreasing tempera-
ture or increasing altitude, a nominal value of 1.1 knot
per Kelvin can be used.

The sensitivity of groundspeed with respect to
windspeed is obtained using Equations (19) and (20)
as follows:

ovy, _ Vi 8in? X g
OV \/V2 — V2sin® xuy

+ €OS Xwg (32)

Figure 3 shows the groundspeed sensitivity with respect
to windspeed. The figure illustrates that groundspeed
is most sensitive to the windspeed in headwind and tail-
wind cases. The sensitivity decreases to a minimum of
zero somewhere close to 90 degrees. These curves also
show that most of contribution to groundspeed sensi-
tivity as a function of airspeed is due to the cos xwg
term in Equation (32). The first term in this equation
causes a small change in the value of track-relative wind
heading at which zero sensitivity occurs.

Finally, the sensitivity of groundspeed with track-
relative wind heading is obtained from Equations (19)
and (20) as:

Viw €08 Xuwg

\/V2 - V2 sin? Xwg

IV,
= —Vysin xyu
MXwg Xuws

+1| (33)
Groundspeed sensitivity as a function of the track-
relative wind heading is shown in Figure 4. The curves
in this figure illustrate that groundspeed sensitivity
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with respect to track-relative wind heading has the
maximum magnitude for crosswind. Sensitivity is zero
for tailwind and headwind.

In summary, the sensitivity studies indicate the fol-
lowing. For a fixed Mach number, groundspeed sensi-
tivity with respect to temperature increases with de-
creasing temperature. Groundspeed sensitivity with re-
spect to windspeed is minimum for crosswind and max-
imum for tailwind and crosswind. Groundspeed sensi-
tivity with respect to track-relative wind heading on
the other hand shows an exactly opposite trend. It is
maximum for crosswind and minimum for tailwind and
headwind.

Since the sensitivity equations also describe the be-
havior in the neighborhood of the nominal, a linear er-
ror model of groundspeed can be developed by using
the Taylor Series expansion as:

av, av, av,
AV, = —Z2A —2AV, I A(Xw — 34

where the A quantities represent the respective errors
in forecast temperature, windspeed and track-relative
wind heading. The partial derivatives are computed
at the nominal values of temperature: ©, windspeed:
V., and track-relative wind heading;: Xoug The par-

~—w? A
tial derivatives are described in Equations (31), (32)
and (33). Since the aircraft’s heading control system
is expected to maintain the ground track, Ay, = 0.
Since the primary focus of the present study is trajec-
tory prediction in the presence of winds, temperature
dependence is ignored for now. With these assump-

tions, the error in groundspeed estimate is given as:

av, av,
AV, = 2 av, + 20 Ay, 35
Vo= a7, AV T g, X (35)

If the nominal values are interpreted as mean values,
this equation relates the deviations about the mean.
Thus, uncertainty in groundspeed can be predicted
based on uncertainty in wind. Eventually, the uncer-
tainty in groundspeed can be propagated into an un-
certainty in position. These notions are explored at
length in the next section.

5 Trajectory Prediction

The accuracy of trajectory prediction depends on the
accuracy of forecasts, on-board equipment used and pi-
loting strategy. For example, in the case where constant
airspeed is flown, the predicted groundspeed is not a
function of temperature forecast rather, it depends on
airspeed measurement accuracy. On the other hand, if
a constant Mach is flown, the predicted groundspeed
depends on temperature forecast and on the accuracy
of Mach measurement. It may be noted that on-board
Mach calculations are based on the static and stagna-
tion pressures sensed. If a Flight Management System

(FMS) is used with an input cost index for flying great
circle segments between waypoints such that the time
of arrival at the destination waypoints is fixed, a more
precise trajectory estimation may be possible by inclu-
sion of the FMS model in the prediction system. In this
research it is assumed that the aircraft is flown with
airspeed or Mach number as controls. In the present
formulation, the control quantities are not required to
be constants but need to be prescribed for the predic-
tion interval. If these quantities are not available, a
constant Mach or airspeed assumption can be used.

Given nominal windspeed and wind heading along
the great circle, the nominal location of the aircraft
can be predicted under the assumption that the aircraft
maintains the ground track. The nominal location pre-
diction procedure is described in Table 1.

Table 1: Nominal Trajectory Prediction

1. Set the predicted position to the current po-
sition:

A=X z=7; h=h

2. Set time: t = tg.

3. Determine W, (A, 7,h), W (A, 7, h) from the
NOAA wind model data.

4. Compute:

V, =W, +W;
X, = tan™ (W, /W,).

5. Compute X, using either Equation (14) or
Equation (15) with A and .

6. Compute V., using Equation (23) with V., V.,

and x . If Mach is being flown, use M

X X, g
and © along with Equations (26) and (25) to

compute V.

7. Integrate Equations (10), (11) and (12) as fol-

lows:

T=1+ Rc})s/\) Kg SinXgAt
A=A+ (%)Y, cos x At
h=h

to obtain the predicted position at the next
time epoch. At is the integration step size.

8. Increment time: t =t + At.

9. Stop if t > t,; else go to step 3. Note, t, is
the time at which prediction is desired.

Here, t, is the time at which prediction is desired and
At is the integration step size.



Since the standard deviations of W,, and W, pro-
vided by NOAA model are known to be between seven
to ten knots [9], the uncertainty in position about the
nominal can be approximately determined. Consider a
variable z which is a function of two random variables
z and y. By Taylor Series expansion:

39( 9y

z=g(z,y) =g(z,g)+% r—z)+6—y(y—g)+--- (36)

Retaining just the first order terms, the variance of z is
approximately given as [10]:

dg dg\? dg Og
2 o 2 2 ZJ
7z (533) Uz+(0y> G"’+2(3w8y 7oy (37)

Clearly, this approximation is only valid near the
means: z and y. Furthermore, this approximation as-
sumes that the function g(z,v) is smooth. In Equation
(37), 02, 02 and o? are the variances of z, y and z; and
Ogy is the covariance of z and y. If the two random
variables z and y are independent, they are uncorre-
lated. Thus, the covariance of z and y: 04, = 0. This
leads to the elimination of the third term in Equation
(37).

Using Equation (37) and the definitions of V,, and
Xw*

Vo = (W2+W2)3 (38)
Xw = tan ! (%) (39)

the variances of V, and x,, can be written as:

w2 w2
ot~ () o+ (2 s b 0

and
o2 (L) o2 4 (L) 52
Xew W2 +w?2)2) W W2 +w22) W
(41)

In the development of the above relationships, W,, and
W, are assumed to be independent random variables.
Furthermore, if the variances of the wind components
are assumed to be equal, that is:

o =ow, =0ow, (42)
then,
oy, ™ o (43)
2 N T
oo Wh+Wl
~ ;—;ﬂ (44)

Next, the variance of groundspeed: a%,g can be ap-

proximated in terms of the variances of windspeed: o3,
and wind heading: o2 as follows:

av, ov, \?
g () o () w

The partial derivatives can be evaluated at the nomi-
nal values by using Equations (32) and (33). By using
Equations (19) and (20) it may be verified that the par-
tial derivative of V, with respect to x,, is same as that
with respect to 4. Since V,, and x,, are independent
and uncorrelated, oy, y,, = 0. With the assumptions of
Equation (42), a simplified expression for the ground-

speed variance can be obtained as:
v?
2 v 2
oy R~ o 46
Yo <12 — V2, sin? xw) (46)

Closer examination of this expression shows that a%,g ~

o2. Clearly this is true for the headwind and tailwind
cases. Note that a%, is maximum for the pure crosswind

case. Also, aV increases with increasing V,,. As an ex-
ample, consider the case of a 100 knot crosswmd If

the airspeed is assumed to be 500 knots, an = 1.0402.

This example shows that o7, = o? is a good approxi-

mation irrespective of the track-relative wind heading.

Finally, the uncertainty in the groundspeed trans-
lates into an uncertainty in the aircraft position given
by the latitude and longitude. The latitude and lon-
gitude uncertainty can be obtained by integrating the
navigation Equations (10) and (11). However, it may be
observed that the latitude Equation (10) is independent
of longitude while the longitude Equation (11) depends
on the latitude. Since the latitude and longitude are
related to each other along the great circle route via
Equation (8), this equation can be used for obtaining
the following navigation equation:

- {ASinT—BCOST

7 } Vg cos Asin x, (47)

Equation (11) forms the other navigation equation.
Note that with A and 7 as the two states, Equations
(47) and (11) form the state equations.

Linearizing Equations (47) and (11) about the
nominal great circle trajectory, the following state equa-
tion is obtained.

2] 2][3) (&) o

ot Fyr  Fyo oT G
where,
A — B
Ry { sinT COST } V., sin Asin X, (49)
B
Py { COST + sinT } V., cos Asin X, (50)
F21 { /\} V smx (51)
F22 = 0 (52)
and
Asint — BsinT
G, = {T} cos)\smx (53)



sin X,
Gy = — 54
2 Rcos A (54)

Here, 6V, appears as control in the state Equation (48).
The underlined quantities in the above equations are
the nominal values along the great circle trajectory.

Let P(t) be the state covariance matrix at any time
t. Starting with the initial covariance matrix at time g,
the covariance matrix at the prediction time ¢, can be
obtained by the following covariance propagation equa-
tion [11]:

P(t) = F)P(t) + PA)FT(t) + GH)QH)GT (&) (55)

where F(t) is the plant matrix, G(¢) is the disturbance
distribution matrix and Q(¢) is the spectral density ma-
trix. It may be noted that the spectral density matrix
may be converted to the covariance matrix by multipli-
cation with the Dirac delta function [11]. The elements
of F(t) and G(t) matrices are given in Equations (49)
through (54). It may be observed from Equation (48)
that in this case, Q(t) is just a scalar corresponding
to the spectral density of the groundspeed uncertainty.
Initially, the four elements of P(¢) can be set to zero.
With the various matrices so specified, the state co-
variance at any time ¢ can be obtained by integrating
Equation (55). The steps needed for propagating the
covariance matrix to time ¢, are summarized in Table
2.

Table 2: Covariance Propagation Summary

1. Compute V (1), X, (t), A(t) and z(t) using the
procedure described in Table 1.

2. Set ¢ = to; P(t,) = [0] and Q(¢) = Q(to) = 0>
where o2 is the variance of the wind velocity
components.

3. Compute the elements of the F(t) matrix
and G(t) vector using Equations (49) through
(54).

4. Integrate Equation (55) with step size At to
obtain P(t + At).

5. Increment time: t =t + At.

6. If t > t, stop; else, go to step 3.

The latitude and longitude uncertainties are com-
pletely specified by the covariance matrix P(t). Let Pi1,
Pi5, Py; and P»s be the elements of the covariance ma-
trix. The principal direction of the covariance matrix

6, can be computed in terms of its elements as [12]:

_(1 1 2P
b = (2) tan [Pn—Pz)z] (56)

The latitude and longitude are correlated in terms of
this angle as follows:

T=tanf,(A—A)+1 (57)

The three times standard deviation bounds of longitude
can be obtained by substituting,

A=A2+3/(P) (58)

in Equation (57). Clearly, Equation (57) cannot be used
if 8, = 90°. In this case the alternative equation,

A= (tai()) (r—1)+A (59)

should be used. In this case, the three times standard
deviation bounds of latitude can be obtained by using,

T =14 3/ (P22) (60)

in Equation (59).

6 Simulation Results

To demonstrate the prediction accuracy using the meth-
ods described in the previous section, the initial 20
minute segment of the great circle trajectory from San
Francisco to Boston is considered. The aircraft airspeed
of 500 knots, a tailwind of 100 knots with the standard
deviation of 10 knots in the north and east components
is assumed.

The actual trajectory of the aircraft is simulated at
one second intervals by adding white noise with a stan-
dard deviation of 10 knots to each wind component.
The cross component of the wind is corrected by suit-
ably crabbing with respect to the desired course. The
remaining alongtrack component of the wind is added
to the alongtrack component of the airspeed to obtain
the groundspeed. The navigation Equations (10) and
(11) are then integrated to obtain the aircraft position
in 20 minutes. The procedure for obtaining the actual
position follows the procedure for predicting the nomi-
nal position with actual values rather than the nominal
values. The procedure for predicting the nominal posi-
tion was described in Table 1.

The predicted nominal trajectory for 20 minutes is
synthesized using the steps described in Table 1. The
nominal tailwind of 100 knots and alongtrack airspeed
of 500 knots is used for this purpose. The predicted
nominal trajectory for 20 minutes is shown in Figure 5.

For covariance propagation, the standard deviation
of groundspeed is assumed to be 10 knots. Driven by
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Figure 5: Predicted nominal trajectory.

the groundspeed uncertainty, the covariance matrix is
propagated to the prediction time using the procedure
described in Table 2. The covariance matrix at the
prediction time P(t,) is then used in Equation (56)
through (59) to obtain the uncertainty bounds of lati-
tude and longitude. These uncertainty bounds can be
used for determination of the inertial position bounds
using Equations (5) through (7). These bounds are
shown in Figure 6. Figure 6 also shows the aircraft
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Figure 6: Predicted position bounds.

positions for the 5000 Monte Carlo runs. The actual
trajectory for these runs were simulated using the pro-
cedure discussed earlier.

Figure 6 shows that the the position uncertainty

bounds for the 20 minute prediction interval are quite
accurately predicted by the procedures described in this
paper.

7 Conclusions

Trajectory prediction into the future during en-route
flight requires knowledge of aircraft controls, and fore-
cast wind and temperature. Aircraft controls are as-
sumed to be the heading angle and Mach number or air-
speed. Mach number or airspeed are known from flight
plans or Air Traffic Control clearances. The heading an-
gle depends on the course angle, windspeed and wind
heading. For this purpose, the course angle was ob-
tained in closed-form based on the equation of the great
circle. The expression for heading angle was then de-
rived. Thus, one of the controls was eliminated. Next,
a wind forecast model that provides the wind and tem-
perature data was described. Since trajectory predic-
tion depends on the estimated groundspeed, its sen-
sitivities with respect to temperature, windspeed and
track-relative wind heading were examined. An error
model was developed using the sensitivity equations.
Subsequently, an algorithm was presented for predict-
ing the nominal trajectory based on the data derived
from the forecast model. Finally, an algorithm for es-
timating error bounds around the nominal trajectory
was presented. The error bounds were determined by
propagating the wind forecasting errors along the nom-
inal trajectory using the error model. Results obtained
via Monte Carlo simulations were used for verification
of the error bound determination procedure.
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A  Wind Forecast Model

Mesoscale Analysis and Prediction System (MAPS) is
used by NOAA for providing the horizontal wind com-
ponents at different levels over the United States, north-
ern Mexico and southern Canada every three hours [7].
MAPS assimilates observations from rawinsondes, sur-
face observations, wind profiler measurements and au-
tomated aircraft reports. During the three hour assim-
ilation cycle, vertical and horizontal consistency checks
are performed on all observations. Several quality con-
trol procedures are described in [7]. Every three hours
forecasts are made out to 12 hours using an analysis
technique formulated in a hybrid vertical coordinate
consisting of terrain-following coordinates close to the
ground and isentropic coordinates above them. In the
isentropic coordinate system, atmospheric features such
as fronts and jet streams, appear with greater coher-
ence [7]. With the hybrid system greater accuracy is
achieved close to the ground and in the troposphere.
Forecast from the previous assimilation cycle forms
the background for the next three hour assimilation cy-
cle. During the assimilation cycle, the background anal-
ysis is subtracted from all observations and the analysis
increment is calculated. This increment is then added
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to the background to generate the final analysis. Since
MAPS uses variables which are slightly unconventional,
the output is converted to more familiar variables such
as isobaric levels between 1000 and 100 hectopascals
(hPa), with 25 hPa resolution. Output variables on
these surfaces include temperature, geopotential alti-
tudes, relative humidity, and horizontal wind compo-
nents W, and W,. All outputs are reported on the
MAPS grid system.

The horizontal resolution of the MAPS grid is 60
km and the grid contains 81 by 62 grid points. A po-
lar stereographic projection which is a special case of
stereographic projection, shown in Figure 7, is used for
mapping to the MAPS grid. Figure 7 shows how wind

Tangent plane a p

Earth

Figure 7: Polar stereographic projection.

velocity components in the local horizontal frame are
reported on a tangential plane. Assume that wind ve-
locity vector components in the horizontal plane at m,
are W,, and W,. Stereographic projection is accom-
plished by projecting a line from o through s to meet
the tangent plane at p. The north and east components
of the wind are reported at p. It may be noted that
the projection point o is located at the opposite pole
such that the normal from the tangency point a passes
through o. Point s is defined by the intersection of the
line me with the surface where c is the earth center.
From the figure it may be seen that data along line mc
are projected to the same location on the plane. Thus to
report the third coordinate such as pressure or altitude,
separate tangent planes are required. To report data at
regular pressure or altitude intervals, a regular three
dimensional rectangular grid is used in which the two
coordinates are associated with the stereographic pro-
jection and the third coordinate is the pressure, which
can be transformed to altitude.

Given the point of tangency specified in terms of
(A, Ta), the stereographic projection of point s onto the
tangent plane is [8]:

z, = RkcosAssin(ry — 1) (61)
yp = RE[cosAgsinAs — sin Ag oS A5 cOS(Ts — 7o)
(62)



where:
2
~[1+sin Ay sin Ay + cos A, cos A, cos(Ts — 74)]

(63)
and (As, 75) is the location of point s. The special case
of north polar stereographic projection, used by NOAA,
is obtained by setting A, to 90 degrees in the above
equations.

Having offered a brief introduction to the wind pre-
diction model, a brief summary of the statistical proper-
ties of the prediction errors derived from MAPS is pro-
vided next. The research in [9] studied the statistical
properties of the residual, defined as the difference be-
tween the observed and forecasted values. The dataset
for the study was collected over a three month period
in 1993. For computation of the statistical quantities,
residuals at rawinsonde locations in the United States
were used. The study found that the mean values of
the residuals in the north and east components of the
wind are less than 1 m/s at every isentropic level and
at most levels less than 0.3 m/s. Standard deviations
of the wind components were found to increase with
height in accordance with the normal increase of the
zonal wind. Skewness in the each wind component was
found to be 0.1 indicating a nearly symmetric distribu-
tion and the flatness was found to be usually greater
than 4 indicating long tails in the distribution.

For trajectory prediction, standard deviation or
variance of the wind components are important because
wind estimation errors directly translate into aircraft
position estimation errors. The variation of standard
deviation reported in [9] as a function of isentropic lev-
els is presented in Figure 8 as a function of pressure al-
titude based on the Standard Atmosphere. It is noted
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Figure 8: Standard deviations of wind components.

that the standard deviation value at 48000 feet is based
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on small data samples hence it is unreliable [9]. The
graphs show that the standard deviations of the north
and east components vary between 7 and 10 knots for
the range of altitudes important for en-route flight.



